[10:30] Takeaways from last lecture

- Relation between z-transform and frequency response
- If ROC includes unit circle, then the substitution $z=e^{j \omega}$ is valid

- Image processing demo \#1: imageRampsCosines.m
- Images are two dimensional signals. x and y coordinates replace time variable t / n. The amplitude of the signal represents brightness.
- Brightness (sometimes called luminance) represented as an unsigned 8-bit number at each pixel location.
- For display, luminance value of
- zero corresponds to black (background intensity)
- 255 corresponds to white (foreground intensity)
- 127.5 is mid-gray
- For printing, luminance value of
- zero corresponds to white (background intensity of the paper)
- 255 corresponds to black (foreground intensity of ink on the paper)
- 127.5 is mid-gray

Linear ramp: Brightness $=\underbrace{\alpha}_{\text {slope }} \cdot \underbrace{x}_{\mathrm{x}-\text { coordinate }}$

One period of cosine $2 \pi \frac{1}{1024}$ radians per sample

Four periods of a cosine $2 \pi \frac{4}{1024}$ radians per sample

Sixteen periods of a cosine $2 \pi \frac{16}{1024}$ radians per sample

- Highest possible frequency for discrete-time cosine would alternate between columns of black and white pixels (π radians per sample).
[11:10] FIR filter examples

Two-sample averaging filter

$$
\begin{aligned}
& y[n]=\frac{1}{2} x[n]+\frac{1}{2} x[n-1] \\
& \begin{aligned}
h[n]= & \frac{1}{2} \delta[n]+\frac{1}{2} \delta[n-1] \\
H(\omega) & =\frac{1}{2}+\frac{1}{2} e^{-j \omega} \\
& =\cos (\omega / 2) \overbrace{e^{-j \omega / 2}}^{\text {half sample delay }}
\end{aligned}
\end{aligned}
$$

First order difference

$$
\begin{aligned}
& y[n]=\frac{1}{2} x[n]-\frac{1}{2} x[n-1] \\
& \begin{aligned}
h[n]= & \frac{1}{2} \delta[n]-\frac{1}{2} \delta[n-1] \\
H(\omega) & =\frac{1}{2}-\frac{1}{2} e^{-j \omega} \\
& =\sin (\omega / 2) e^{j(\pi-\omega) / 2}
\end{aligned}
\end{aligned}
$$

- Image processing demo \#2: Filtering. What happens when five-tap averaging and first-order difference filters filter an image (either separately or in cascade)?
- Averaging filter: blurring effect
- Differencing filter: extracts fine detail, edges, textures.
- Cascade of averaging and difference filters
- extracts textures and edges of the blurred image
- Any loss in precision in the calculations in the cascade? No.
- The initial mandrill image has 256 rows and 256 columns and each pixel is an unsigned eight-bit number to represent gray levels [0,255]
- Averaging filter applied across each row produces a 256×260 image due to convolving a five-coefficient impulse response and the row of 256 elements - adding 5 numbers requires 3 extra bits worst case
- Averaging filter applied down each column of the 256x260 image to produces a 260x260 image - 3 extra bits worst case
- Difference filter applied across each row of 260×260 image produces a $260 x 261$ image - adding 2 numbers requires 1 carry bit worst case
- First-order difference filter is down each column of the 260×261 image to produce a 261x261 image - 1 carry bit worst case
- The image produced by the cascade requires 16 bits in the worst case
- All intermediate calculations were carried out in 64-bt floating point arithmetic in MATLAB with 53 bits of mantissa and 11 bits exponent

