[10:30] Takeaways from last lecture

- Relation between z-transform and frequency response
 - If ROC includes unit circle, then the substitution $z = e^{j\omega}$ is valid

- Image processing demo #1: <u>imageRampsCosines.m</u>
 - Images are two dimensional signals. x and y coordinates replace time variable t/n. The amplitude of the signal represents brightness.
 - Brightness (sometimes called luminance) represented as an unsigned 8-bit number at each pixel location.
 - For display, luminance value of
 - zero corresponds to black (background intensity)
 - 255 corresponds to white (foreground intensity)
 - 127.5 is mid-gray
 - For printing, luminance value of
 - zero corresponds to white (background intensity of the paper)
 - 255 corresponds to black (foreground intensity of ink on the paper)
 - 127.5 is mid-gray

One period of cosine $2\pi \frac{1}{1024}$ radians per sample

Four periods of a cosine $2\pi \frac{4}{1024}$ radians per sample

Sixteen periods of a cosine $2\pi \frac{16}{1024}$ radians per sample

• Highest possible frequency for discrete-time cosine would alternate between columns of black and white pixels (π radians per sample).

[11:10] FIR filter examples

Two-sample averaging filter $y[n] = \frac{1}{2}x[n] + \frac{1}{2}x[n-1]$ $h[n] = \frac{1}{2}\delta[n] + \frac{1}{2}\delta[n-1]$ $H(\omega) = \frac{1}{2} + \frac{1}{2}e^{-j\omega}$ half sample delay $= \cos(\omega/2) \qquad \overbrace{e^{-j\omega/2}}^{\text{half sample delay}}$	h[n] Two-tap averaging filter $\frac{1}{2}$ $h[n]$ 1 1 2 3 n
First order difference $y[n] = \frac{1}{2}x[n] - \frac{1}{2}x[n-1]$ $h[n] = \frac{1}{2}\delta[n] - \frac{1}{2}\delta[n-1]$ $H(\omega) = \frac{1}{2} - \frac{1}{2}e^{-j\omega}$ $= \sin(\omega/2)e^{j(\pi-\omega)/2}$	h[n] First-order difference $\frac{1}{2}$ n $-\frac{1}{2}$ 3

- Image processing demo #2: <u>Filtering</u>. What happens when five-tap averaging and first-order difference filters filter an image (either separately or in cascade)?
 - Averaging filter: blurring effect
 - Differencing filter: extracts fine detail, edges, textures.
 - Cascade of averaging and difference filters
 - extracts textures and edges of the blurred image
 - Any loss in precision in the calculations in the cascade? No.
 - The initial mandrill image has 256 rows and 256 columns and each pixel is an unsigned eight-bit number to represent gray levels [0, 255]
 - Averaging filter applied across each row produces a 256x260 image due to convolving a five-coefficient impulse response and the row of 256 elements – adding 5 numbers requires 3 extra bits worst case
 - Averaging filter applied down each column of the 256x260 image to produces a 260x260 image – 3 extra bits worst case
 - Difference filter applied across each row of 260x260 image produces a 260x261 image – adding 2 numbers requires 1 carry bit worst case
 - First-order difference filter is down each column of the 260x261 image to produce a 261x261 image – 1 carry bit worst case
 - The image produced by the cascade requires 16 bits in the worst case
 - All intermediate calculations were carried out in 64-bt floating point arithmetic in MATLAB with 53 bits of mantissa and 11 bits exponent

